3.4/3.5 Notes: Real and Complex Zeros

The possible rational zeros of

$$
\mathrm{P}(\mathrm{x})=\frac{\text { factors of constant term }}{\text { factors of leading coefficient }}
$$

Reminder: the zeros of a function are the same as the x-intercepts of its graph.

3.4/3.5 Notes: Real and Complex Zeros

Factor and find the zeros:

$$
\text { a) } \begin{aligned}
F(x) & =x^{4}+8 x^{2}-9 \\
& =\left(x^{2}-1\right)\left(x^{2}+9\right) \\
& =(x+1)(x-1)\left(x^{2}+9\right)
\end{aligned}
$$

b) $P(x)=x^{4}+9 x^{2}$
$=x^{2}\left(x^{2}+9\right)$
zeros: $x_{m u t r p i r i t y ~}^{\text {a }}$
zeros: $\quad x=-1 \quad x=1 \quad x= \pm 3 i$ $\mathrm{x}= \pm 3 \mathrm{i}$

$$
\begin{aligned}
& x^{2}+9=0 \\
& \sqrt{x^{2}}=\sqrt{-9}
\end{aligned}
$$

Factor and find the zeros:
15. $P(x)=x^{3}+2 x^{2}-13 x+10$
possible zeros

$$
\pm 1 \pm 2 \pm 5 \pm 10
$$

Factor and find the zeros:
39.

3.4 CHECK EVENS

16. $\quad P(x)=(x+2)(x+1)(x-7)$.

Therefore, the zeros are $-2,-1$, and 7 .
18. $P(x)=x^{3}-3 x-2=(x-2)(x+1)^{2}$

Therefore, the zeros are 2 and -1 .
32. $P(x)=2\left(x-\frac{1}{2}\right)(x+2)^{2}$.

Therefore, the zeros are -2 and $\frac{1}{2}$.

